
CGM OPEN ACTIVITY REPORT — 2003
WASHINGTON DC MEETING

Revision: 1.0-draft

Date: October 15, 2003

Preface
This report describes activities of CGM Open meeting held on September 21, 2003 in Washington DC
at the Embassy Suites Hotel.

Table of Contents
1 Meeting Details..2
1.1 Location and Dates ...2
1.2 Meeting...2
1.3 CGM Open Attendees ...2
2 Agenda...2
2.1 Committee...2
3 Output and Action Items..2
4 Agenda discussions ...3
4.1 CGM Open membership/OASIS ...3
4.2 Vendor product web pages...3
4.3 Interoperability web pages..3
4.4 SVG status ..4
4.5 XML encoded CGM ..4
4.6 WebCGM DOM..4
5 Note of appreciation ...14

Page 2 of 14

1 Meeting Details

1.1 Location and Dates
Embassy Suites Hotel, Washington DC, September 21, 2003

1.2 Meeting
• CGM Open 21 September 2003.

1.3 CGM Open Attendees
• Dave Cruikshank – Boeing
• Dieter Weidenbruck – ITEDO
• Ulrich Laesche – Ematek
• Benoit Bezaire – Corel Corp
• Franck DuLuc – EADS/Airbus
• Andrew Moorhouse – UK MOD
• Forrest Carpenter – SDI
• Kevin O’Kane – Auto-trol

2 Agenda

2.1 Committee
The items on the agenda of the Committee include:

• CGM Open membership/OASIS

• Vendor product web pages

• Interoperability web pages

• SVG status

• XML encoded CGM

• WebCGM DOM

3 Output and Action Items

Item Who When Status

Meeting Minutes Cruikshank 10/15 Done

Governance Actions

Discussion CGM Open with OASIS with Patrick
Gannon

Henderson/
Weidenbruck/
Cruikshank

10/17

Circulate changes to bylaws Henderson Pending
OASIS

Page 3 of 14

discussions

Vendor Product Web Pages Actions

Update editor ICS proforma O’Kane Open

Update viewer ICS proforma Henderson Open

Interoperability WebPages Actions

Update user interface based on comments Duluc 10/31

Perform test of reporting interface All 11/26

Register “report.cgmopen.org” domain name Weidenbruck 11/26

SVG Status Actions

Follow status of SVG 1.2 development Bezaire

XML Encoded CGM Actions

Discuss CGM Open position with Chris Lilley Henderson/
Weidenbruck

WebCGM DOM
Continue development of WebCGM DOM Spec Bezaire/

Vendors
12/15

Miscellaneous Actions

Determine timing for next CGM Open meeting/telecon All

4 Agenda discussions

4.1 CGM Open membership/OASIS
CGM Open is in the process of welcoming two new members. The Navy and Arbortext, both of whom
are current OASIS members, will notify OASIS of their intent to participate in CGM Open work at their
next membership renewal cycle.

OASIS continues to express a desire that CGM Open move from affiliate status to become a member
section. Discussions with Patrick Gannon, president and CEO of OASIS, will continue during a telecon
scheduled for October 17 with Lofton, Dieter, and Dave.

4.2 Vendor product web pages
All links to the various product ICS pages now resolve correctly. Some products have been reassigned
to the correct category. References to “transcoders” has been replaced with “converters” on the web
pages.

The proposed changes to the viewer and editor ICS formats are still pending and will be inc luded in the
next update of the product information

4.3 Interoperability web pages
The problem tracking external interface was reviewed. The following comments were captured:

Page 4 of 14

• The product list from the product web pages needs to be inserted into the “tool” pull-down
menu

• A window needs to be added to capture tools not listed

• A method needs to be defined to direct responsibility for tool problems reported for which
solutions are provided by CGM Open vendors (e.g., Framemaker & Epic)

• Need to add link on page to submit comments to administrator

• Need to add link on CGM Open home page to a “Problem Reporting” page that describes the
interoperability project and outlines the process

• Need to develop a proposed time line for problem resolution, based on Franck’s process
charts

A proposal was accepted to register “report.cgmopen.org” as the domain name to implement. For
“guest” problem reports, Dave volunteered to act as administrator. Once the comments are addressed,
CGM Open will do a month’s worth of testing and go live with the service. A proposal to attempt to go
live by December 1, 2003 was accepted.

4.4 SVG status
The W3C SVG committee is in the process of developing SVG 1.2, which will be reorganized to contain
a “core” functionality section. With the development of this section, it will be possible to write profiles of
SVG. Initial work on SVG 1.2 is expected to be complete Q1/Q2 of 2004, with final approval in the
Q3/Q4 2004 time frame.

4.5 XML encoded CGM
The membership conducted a lengthy discussion on the potential of an XML encoded specification for
WebCGM or CGM. The following comments were noted:

• Indexing text for searching and updating links dynamically are some use cases of XML
encoded CGM

• Having a DOM in place would address some but not all of the requirements

• Adding angle brackets to the Clear Text encoding does not address all of the requirements

• It’s unlikely that there would be much support in the W3C for a second XML encoded 2D
graphics format

• Is it likely that the ISO SC24 committee would be interested in this work?

• This project would divert resources from WebCGM DOM development

As a result of the discussion it was decided that the work on the WebCGM DOM has priority over an
XML encoding. It appears that that an XML encoding of CGM or WebCGM would involve a substantial
amount of work from both the vendors and users to develop software and specifications. Based on an
analysis of use cases, there does not appear to be much return on investment.

CGM Open recognizes the need to have graphics expressible in XML for the web, but it probably
makes more sense to apply resources to define the mapping from WebCGM to SVG for web delivery.
If the SVG committee structures the SVG specification so that valid profiles can be written, CGM Open
would be interested in contributing to a WebCGM SVG profile.

Dieter and Lofton need to validate this approach with Chris Lilley of the W3C.

4.6 WebCGM DOM
Benoit provided an initial draft of a DOM specification to support WebCGM. This initial work represents
a viewer DOM. At some point in the future, it may be extended to an authoring DOM where
persistence will be addressed. Additional work need to be done on the DOM to satisfy the

Page 5 of 14

requirements for control of primitive attributes at the picture and APS level defined previously. In
addition, a common interface between the WebCGM APS and metadata in XML companion files needs
to be developed. Benoit volunteered to continue as the DOM editor/developer and will work with the
other vendors to finalize it.

The first working draft of the DOM in included here in the minutes.

WebCGM DOM (1st Working Draft)

Legend:
Not required in WebCGM DOM

--

interface Node {
// NodeType
const unsigned short PICBODY_NODE = 1;
const unsigned short LAYER_NODE = 2;
const unsigned short GROBJECT_NODE = 3;
const unsigned short PARA_NODE = 4;
const unsigned short GDATA_NODE = 5;
const unsigned short SUBPARA_NODE = 6;

readonly attribute DOMString nodeName;
readonly attribute unsigned short nodeType;
readonly attribute Node parentNode;
readonly attribute Node firstChild;
readonly attribute Node lastChild;
readonly attribute Node previousSibling;
readonly attribute Node nextSibling;
readonly attribute Document ownerDocument;
readonly attribute NodeList childNodes;

boolean hasChildNodes();
boolean hasAttributes();

const unsigned short ELEMENT_NODE = 1;
const unsigned short ATTRIBUTE_NODE = 2;
const unsigned short TEXT_NODE = 3;
const unsigned short CDATA_SECTION_NODE = 4;
const unsigned short ENTITY_REFERENCE_NODE = 5;
const unsigned short ENTITY_NODE = 6;
const unsigned short PROCESSING_INSTRUCTION_NODE = 7;
const unsigned short COMMENT_NODE = 8;
const unsigned short DOCUMENT_NODE = 9;
const unsigned short DOCUMENT_TYPE_NODE = 10;
const unsigned short DOCUMENT_FRAGMENT_NODE = 11;
const unsigned short NOTATION_NODE = 12;

readonly attribute NamedNodeMap attributes;
attribute DOMString nodeValue; // raises(DOMException) on setting //
raises(DOMException) on retrieval

Node insertBefore(in Node newChild, in Node refChild) raises(DOMException);
Node replaceChild(in Node newChild, in Node oldChild) raises(DOMException);
Node removeChild(in Node oldChild) raises(DOMException);

Page 6 of 14

Node appendChild(in Node newChild) raises(DOMException);
Node cloneNode(in boolean deep);
void normalize();
boolean isSupported(in DOMString feature, in DOMString version);
readonly attribute DOMString namespaceURI;
attribute DOMString prefix; // raises(DOMException) on setting
readonly attribute DOMString localName;
};

Definition group NodeType
An integer indicating which type of node this is.
Note: Numeric codes up to 200 are reserved to W3C for possible future use.
Defined Constants

PICBODY_NODE
The node is a picbody
LAYER_NODE
The node is a layer
GROBJECT_NODE
The node is a grobject
PARA_NODE
The node is a para
GDATA_NODE
The node is a gdata
SUBPARA_NODE
The node is a subpara

Attributes
childNodes of type NodeList, readonly

A NodeList that contains all children of this node. If there are no children, this is a
NodeList containing no nodes.

firstChild of type Node, readonly

The first child of this node. If there is no such node, this returns null.

lastChild of type Node, readonly

The last child of this node. If there is no such node, this returns null.

nextSibling of type Node, readonly

The node immediately following this node. If there is no such node, this returns null.

nodeName of type DOMString, readonly

The name of this node, depending on its type; see the table above.

nodeType of type unsigned short, readonly

A code representing the type of the underlying object, as defined above.

ownerDocument of type Document, readonly

The Document object associated with this node. This is also the Document object used to
create new nodes. When this node is a Document or a DocumentType
which is not used with any Document yet, this is null.

parentNode of type Node, readonly

The parent of this node. All nodes, except Attr, Document,

previousSibling of type Node , readonly

Page 7 of 14

The node immediately preceding this node. If there is no such node, this returns null.

Methods
hasAttributes

Returns whether this node (if it is an element) has any attributes.
Return Value
boolean true if this node has any attributes, false otherwise.
No Parameters
No Exceptions

hasChildNodes

Returns whether this node has any children.
Return Value
boolean true if this node has any children, false otherwise.
No Parameters
No Exceptions

--

interface Document : Node {
readonly attribute Element documentElement;

NodeList getElementsByTagName(in DOMString tagname);
Element getElementById(in DOMString elementId);
NodeList getElementsByAttributeNameValue (in DOMString name, in DOMString value);
NodeList getElementsByURIFragment (in DOMString urifragment);

readonly attribute DocumentType doctype;
readonly attribute DOMImplementation implementation;

Element createElement(in DOMString tagName) //raises(DOMException);
DocumentFragment createDocumentFragment();
Text createTextNode(in DOMString data);
Comment createComment(in DOMString data);
CDATASection createCDATASection(in DOMString data) //raises(DOMException);
ProcessingInstruction createProcessingInstruction(in DOMString target, in
DOMString data) // raises(DOMException);
Attr createAttribute(in DOMString name) //raises(DOMException);
EntityReference createEntityReference(in DOMString name)
//raises(DOMException);
Node importNode(in Node importedNode, in boolean deep)
//raises(DOMException);
Element createElementNS(in DOMString namespaceURI, in DOMString
qualifiedName) //raises(DOMException);
Attr createAttributeNS(in DOMString namespaceURI, in DOMString
qualifiedName) //raises(DOMException);
NodeList getElementsByTagNameNS(in DOMString namespaceURI, in DOMString
localName);
};

Attributes
documentElement of type Element, readonly

This is a convenience attribute that allows direct access to the child node that is the root
element of the document.

Page 8 of 14

Methods
getElementById

Returns the Element whose ID is given by elementId. If no such element exists, returns
null. Behavior is not defined if more than one element has this ID.
Note: The DOM implementation must have information that says which attributes are of type
ID. Attributes with the name "ID" are not of type ID unless so defined. Implementations that do
not know whether attributes are of type ID or not are expected to return null.
Parameters
elementId of type DOMString
The unique id value for an element.
Return Value
Element The matching element.
No Exceptions

getElementsByTagName

Returns a NodeList of all the Elements with a given tag name in the order in which they
are encountered in a preorder traversal of the Document tree.
Parameters
tagname of type DOMString
The name of the tag to match on. The special value "*" matches all tags.
Return Value
NodeList
A new NodeList object containing all the matched Elements
No Exceptions

--

interface NodeList {
Node item(in unsigned long index);
readonly attribute unsigned long length;
};

Attributes
length of type unsigned long, readonly

The number of nodes in the list. The range of valid child node indices is 0 to length-1
inclusive.

Methods
item

Returns the indexth item in the collection. If index is greater than or equal to the number of
nodes in the list, this returns null.
Parameters
index of type unsigned long
Index into the collection.
Return Value
Node
The node at the indexth position in the NodeList, or null if that is not a valid index.
No Exceptions

--

Page 9 of 14

interface Element : Node {
readonly attribute DOMString tagName;
DOMString getAttribute(in DOMString name);
void setAttribute(in DOMString name, in DOMString value)
//raises(DOMException);
void removeAttribute(in DOMString name) //raises(DOMException);
NodeList getElementsByTagName(in DOMString name);
boolean hasAttribute(in DOMString name);

Attr getAttributeNode(in DOMString name);
Attr setAttributeNode(in Attr newAttr) //raises(DOMException);
Attr removeAttributeNode(in Attr oldAttr) //raises(DOMException);
DOMString getAttributeNS(in DOMString namespaceURI, in DOMString
localName);
void setAttributeNS(in DOMString namespaceURI, in DOMString qualifiedName,
in DOMString value) //raises(DOMException);
void removeAttributeNS(in DOMString namespaceURI, in DOMString localName)
//raises(DOMException);
Attr getAttributeNodeNS(in DOMString namespaceURI,in DOMString localName);
Attr setAttributeNodeNS(in Attr newAttr) //raises(DOMException);
NodeList getElementsByTagNameNS(in DOMString namespaceURI, in DOMString
localName);
boolean hasAttributeNS(in DOMString namespaceURI, in DOMString localName);
};

Attributes
tagName of type DOMString, readonly

The name of the element. For example, in:
<elementExample id="demo">
...
</elementExample> ,
tagName has the value "elementExample". Note that this is case-preserving in XML, as
are all of the operations of the DOM. The HTML DOM returns the tagName of an HTML
element in the canonical uppercase form, regardless of the case in the source HTML
document.

Methods
getAttribute

Retrieves an attribute value by name.
Parameters
name of type DOMString
The name of the attribute to retrieve.
Return Value
DOMString
The Attr value as a string, or the empty string if that attribute does not have a specified or
default value.
No Exceptions

getElementsByTagName

Returns a NodeList of all descendant Elements with a given tag name, in the order in
which they are encountered in a preorder traversal of this Element tree.
Parameters
name of type DOMString
The name of the tag to match on. The special value "*" matches all tags.
Return Value

Page 10 of 14

NodeList A list of matching Element nodes.
No Exceptions

hasAttribute

Returns true when an attribute with a given name is specified on this element or has a
default value, false otherwise.
Parameters
name of type DOMString
The name of the attribute to look for.
Return Value
boolean true if an attribute with the given name is specified on this element or has a
default value, false otherwise.
No Exceptions

removeAttribute
Removes an attribute by name. If the removed attribute is known to have a default value, an
attribute immediately appears containing the default value as well as the corresponding
namespace URI, local name, and prefix when applicable.
Parameters
name of type DOMString
The name of the attribute to remove.
Exceptions
DOMException
NO_MODIFICATION_ALLOWED_ERR: Raised if this node is readonly.
No Return Value

setAttribute

Adds a new attribute. If an attribute with that name is already present in the element, its value
is changed to be that of the value parameter. This value is a simple string; it is not parsed as it
is being set.
Parameters
name of type DOMString
The name of the attribute to create or alter.
value of type DOMString
Value to set in string form.
Exceptions
DOMException
INVALID_CHARACTER_ERR: Raised if the specified name
contains an illegal character.
NO_MODIFICATION_ALLOWED_ERR: Raised if this node
is readonly.
No Return Value

--

interface GetWebCGMDocument {
Document getWebCGMDocument () //raises(DOMException);
};

Methods
getWebCGMDocument

Returns the Document object for the referenced WebCGM document\
No Paremeters

Page 11 of 14

Return value
Document The Document object for the referenced WebCGM Document
Exceptions
DOMException NOT_SUPPORTED_ERR. No Document object is available

--

interface Event {
readonly attribute EventTarget target;
readonly attribute EventTarget currentTarget;
readonly attribute DOMString type;

// PhaseType
const unsigned short CAPTURING_PHASE = 1;
const unsigned short AT_TARGET = 2;
const unsigned short BUBBLING_PHASE = 3;
readonly attribute unsigned short eventPhase;
readonly attribute boolean bubbles;
readonly attribute boolean cancelable;
readonly attribute DOMTimeStamp timeStamp;
void stopPropagation();
void preventDefault();
void initEvent(in DOMString eventTypeArg,
in boolean canBubbleArg,
in boolean cancelableArg);
};

Attributes
currentTarget of type EventTarget, readonly

Used to indicate the EventTarget whose EventListeners are currently being
processed. This is particularly useful during capturing and bubbling.

target of type EventTarget, readonly
 Used to indicate the EventTarget to which the event was originally dispatched.

type of type DOMString, readonly
 The name of the event (case-insensitive). The name must be an XML name.

--

interface MouseEvent : UIEvent {
readonly attribute long screenX;
readonly attribute long screenY;
readonly attribute long clientX;
readonly attribute long clientY;
readonly attribute boolean ctrlKey;
readonly attribute boolean shiftKey;
readonly attribute boolean altKey;
readonly attribute boolean metaKey;
readonly attribute unsigned short button;
readonly attribute EventTarget relatedTarget;
void initMouseEvent(in DOMString typeArg,

Page 12 of 14

in boolean canBubbleArg,
in boolean cancelableArg,
in views::AbstractView viewArg,
in long detailArg,
in long screenXArg,
in long screenYArg,
in long clientXArg,
in long clientYArg,
in boolean ctrlKeyArg,
in boolean altKeyArg,
in boolean shiftKeyArg,
in boolean metaKeyArg,
in unsigned short buttonArg,
in EventTarget relatedTargetArg);
};

Attributes
altKey of type boolean, readonly

Used to indicate whether the ’alt’ key was depressed during the firing of the event. On some
platforms this key may map to an alternative key name.

button of type unsigned short, readonly
During mouse events caused by the depression or release of a mouse button, button is
used to indicate which mouse button changed state. The values for button range from zero
to indicate the left button of the mouse, one to indicate the middle button if present, and two to
indicate the right button. For mice configured for left handed use in which the button actions
are reversed the values are instead read from right to left.

clientX of type long, readonly
 The horizontal coordinate at which the event occurred relative to the DOM implementation’s
client area.

clientY of type long, readonly
 The vertical coordinate at which the event occurred relative to the DOM implementation’s client
area.

ctrlKey of type boolean, readonly
 Used to indicate whether the ’ctrl’ key was depressed during the firing of the event.

metaKey of type boolean, readonly

Used to indicate whether the ’meta’ key was depressed during the firing of the event. On some
platforms this key may map to an alternative key name.

screenX of type long, readonly
 The horizontal coordinate at which the event occurred relative to the origin of the screen
coordinate system.

screenY of type long, readonly
 The vertical coordinate at which the event occurred relative to the origin of the screen
coordinate system.

shiftKey of type boolean, readonly
 Used to indicate whether the ’shift’ key was depressed during the firing of the event.

The different types of Mouse events that can occur are:

Page 13 of 14

click

The click event occurs when the pointing device button is clicked over an element. A click is
defined as a mousedown and mouseup over the same screen location. The sequence of
these events is:
mousedown
mouseup
click
If multiple clicks occur at the same screen location, the sequence repeats with the detail
attribute incrementing with each repetition. This event is valid for most elements.
Bubbles: Yes
Cancelable: Yes
Context Info: screenX, screenY, clientX, clientY, altKey, ctrlKey, shiftKey, metaKey, button,

mousedown
The mousedown event occurs when the pointing device button is pressed over an element.
This event is valid for most elements.
Bubbles: Yes
Cancelable: Yes
Context Info: screenX, screenY, clientX, clientY, altKey, ctrlKey, shiftKey, metaKey, button,
detail

mouseup
The mouseup event occurs when the pointing device button is released over an element. This
event is valid for most elements.
Bubbles: Yes
Cancelable: Yes
Context Info: screenX, screenY, clientX, clientY, altKey, ctrlKey, shiftKey, metaKey, button,
detail

mouseover
The mouseover event occurs when the pointing device is moved onto an element. This event
is valid for most elements.
Bubbles: Yes
Cancelable: Yes
Context Info: screenX, screenY, clientX, clientY, altKey, ctrlKey, shiftKey, metaKey

mousemove
The mousemove event occurs when the pointing device is moved while it is over an element.
This event is valid for most elements.
Bubbles: Yes
Cancelable: No
Context Info: screenX, screenY, clientX, clientY, altKey, ctrlKey, shiftKey, metaKey

mouseout
The mouseout event occurs when the pointing device is moved away from an element. This
event is valid for most elements..
Bubbles: Yes
Cancelable: Yes
Context Info: screenX, screenY, clientX, clientY, altKey, ctrlKey, shiftKey, metaKey,

--

Other possibilities: Key events, mutation events...
Need use cases to determine if they are required.

Page 14 of 14

5 Note of appreciation

CGM Open would like to express our thanks to Dave for allowing his suite to be used for the meeting.

