CGM OPEN ACTIVITY REPORT — 2003
WASHINGTON DC MEETING

Revision: 1.0-draft

Date: October 15, 2003

Preface

This report describes activities of CGM Open meeting held on September 21, 2003 in Washington DC

at the Embassy Suites Hotel.

Table of Contents

1 MEELNG DELAIIS. et aa
N W0 Tor= L (o g = T (o I = (3
1.2 MBEEING . ettt et
1.3 CGM OPEN AMENACES ... ettt ettt e e e e e e e eenas
2 AGEINOA. ...ttt
P20 R Oo 111 1011 11T PSPPI
3 (@011 010 1ar=Tq o [aNox 1o o I 1 (=T 4 1S S
N Ao 1= o F= W Yol U 1 (o] PN
4.1 CGM Open membership/OASIS e
4.2 Vendor ProduCt WED PAOES........cvuiiiiii e
4.3 Interoperability WeD Pages. iiiiiiiii i
4.4 SVG SEALUS ...eeuiieetieet ettt e
4.5 XML €NCOUEA CGMuiiiiiiiiieii ettt ettt et e e e e eenaeees
4.6 WEDCGM DOM....oiiiiiiiiii et e e e e e e e et e e e e e e e et e e et e e et e e e e eanaaae

5 NOtE Of APPIECIALIONu ettt ettt et

1 Meeting Detalils

1.1 Location and Dates

Embassy Suites Hotel, Washington DC, September 21, 2003

1.2 Meeting

CGM Open 21 September 2003.

1.3 CGM Open Attendees

Dave Cruikshank — Boeing
Dieter Weidenbruck — ITEDO
Ulrich Laesche — Ematek
Benoit Bezaire — Corel Corp
Franck DuLuc — EADS/Airbus

Andrew Moorhouse — UK MOD

Forrest Carpenter — SDI
Kevin O’Kane — Auto-trol

2 Agenda

2.1 Committee

The items on the agenda of the Committee include:

CGM Open membership/OASIS

Vendor product web pages
Interoperability web pages
SVG status

XML encoded CGM
WebCGM DOM

3 Output and Action Items

Item Who When Status
Meeting Minutes Cruikshank 10/15 Done
Governance Actions
Discussion CGM Open with OASIS with Patrick Henderson/ 10/17
Gannon Weidenbruck/
Cruikshank
Circulate changes to bylaws Henderson Pending
OASIS

Page 2 of 14

discussions

Vendor Product Web Pages Actions

Update editor ICS proforma O’Kane Open

Update viewer ICS proforma Henderson Open

Interoperability WebPages Actions

Update user interface based on comments Duluc 10/31
Perform test of reporting interface All 11/26
Register “report.cgmopen.org” domain name Weidenbruck 11/26

SVG Status Actions

Follow status of SVG 1.2 development Bezaire

XML Encoded CGM Actions

Discuss CGM Open position with Chris Lilley Henderson/
Weidenbruck
WebCGM DOM
Continue development of WebCGM DOM Spec Bezaire/ 12/15
Vendors

Miscellaneous Actions

Determine timing for next CGM Open meeting/telecon All

4 Agenda discussions

4.1 CGM Open membership/OASIS

CGM Open is in the process of welcoming two new members. The Navy and Arbortext, both of whom
are current OASIS members, will notify OASIS of their intent to participate in CGM Open work at their
next membership renewal cycle.

OASIS continues to express a desire that CGM Open move from affiliate status to become a member
section. Discussions with Patrick Gannon, president and CEO of OASIS, will continue during a telecon
scheduled for October 17 with Lofton, Dieter, and Dave.

4.2 Vendor product web pages

All links to the various product ICS pages now resolve correctly. Some products have been reassigned
to the correct category. References to “transcoders” has been replaced with “converters” on the web
pages.

The proposed changes to the viewer and editor ICS formats are still pending and will be included in the
next update of the product information

4.3 Interoperability web pages

The problem tracking external interface was reviewed. The following comments were captured:

Page 3 of 14

The product list from the product web pages needs to be inserted into the “tool” pull-down
menu

A window needs to be added to capture tools not listed

A method needs to be defined to direct responsibility for tool problems reported for which
solutions are provided by CGM Open vendors (e.g., Framemaker & Epic)

Need to add link on page to submit comments to administrator

Need to add link on CGM Open home page to a “Problem Reporting” page that describes the
interoperability project and outlines the process

Need to develop a proposed time line for problem resolution, based on Franck’s process
charts

A proposal was accepted to register “report.cgmopen.org” as the domain name to implement. For
“guest” problem reports, Dave volunteered to act as administrator. Once the comments are addressed,
CGM Open will do a month’s worth of testing and go live with the service. A proposal to attempt to go
live by December 1, 2003 was accepted.

44 SVG status

The W3C SVG committee is in the process of developing SVG 1.2, which will be reorganized to contain
a “core” functionality section. With the development of this section, it will be possible to write profiles of
SVG. Initial work on SVG 1.2 is expected to be complete Q1/Q2 of 2004, with final approval in the
Q3/Q4 2004 time frame.

45 XML encoded CGM

The membership conducted a lengthy discussion on the potential of an XML encoded specification for
WebCGM or CGM. The following comments were noted:

Indexing text for searching and updating links dynamically are some use cases of XML
encoded CGM

Having a DOM in place would address some but not all of the requirements
Adding angle brackets to the Clear Text encoding does not address all of the requirements

It's unlikely that there would be much support in the W3C for a second XML encoded 2D
graphics format

Is it likely that the ISO SC24 committee would be interested in this work?
This project would divert resources from WebCGM DOM development

As a result of the discussion it was decided that the work on the WebCGM DOM has priority over an
XML encoding. It appears that that an XML encoding of CGM or WebCGM would involve a substantial
amount of work from both the vendors and users to develop software and specifications. Based on an
analysis of use cases, there does not appear to be much return on investment.

CGM Open recognizes the need to have graphics expressible in XML for the web, but it probably
makes more sense to apply resources to define the mapping from WebCGM to SVG for web delivery.
If the SVG committee structures the SVG specification so that valid profiles can be written, CGM Open
would be interested in contributing to a WebCGM SVG profile.

Dieter and Lofton need to validate this approach with Chris Lilley of the W3C.

4.6 WebCGMDOM

Benoit provided an initial draft of a DOM specification to support WebCGM. This initial work represents
a viewer DOM. At some paint in the future, it may be extended to an authoring DOM where
persistence will be addressed. Additional work need to be done on the DOM to satisfy the

Page 4 of 14

requirements for control of primitive attributes at the picture and APS level defined previously. In
addition, a common interface between the WebCGM APS and metadata in XML companion files needs
to be developed. Benoit volunteered to continue as the DOM editor/developer and will work with the
other vendors to finalize it.

The first working draft of the DOM in included here in the minutes.

WebCGM DOM (1st Working Draft)

Legend:
Not required in WebCGM DOM

i nterface Node {

/1 NodeType

const unsigned short Pl CBODY_NCDE = 1;
const unsi gned short LAYER NODE = 2;
const unsi gned short GROBJECT _NCODE = 3;
const unsigned short PARA NODE = 4;
const unsigned short GDATA NODE = 5;
const unsigned short SUBPARA NCDE = 6;

readonly attri bute DOVStri ng nodeNane;
readonly attribute unsigned short nodeType;
readonly attribute Node parent Node;
readonly attribute Node firstChild;
readonly attribute Node | astChild;

readonly attribute Node previousSibling;
readonly attribute Node nextSibling;
readonly attribute Docunent owner Docunent;
readonly attribute NodeLi st chil dNodes;

bool ean hasChi | dNodes();
bool ean hasAttri butes();

const unsigned short ELEMENT _NODE = 1;

const unsi gned short ATTRI BUTE_NCDE = 2;

const unsigned short TEXT_NODE = 3;

const unsigned short CDATA SECTI ON_NODE = 4;
const unsigned short ENTI TY_REFERENCE NODE = 5;
const unsigned short ENTITY_NCDE = 6;

const unsigned short PROCESSI NG | NSTRUCTI ON_NCDE = 7;
const unsigned short COMVENT_NODE = 8;

const unsi gned short DOCUMENT _NODE = 9;

const unsi gned short DOCUMENT TYPE NODE = 10;
const unsi gned short DOCUMENT FRAGVENT NODE = 11;
const unsi gned short NOTATI ON_NODE = 12;

readonly attribute NamedNodeMap attri butes;
attribute DOVString nodeVal ue; // raises(DOVException) on setting //
rai ses(DOVException) on retrieval

Node i nsertBefore(in Node newChild, in Node refChild) rai ses(DOVException);

Node repl aceChild(in Node newChild, in Node ol dChild) rai ses(DOVEXception);
Node renoveChil d(in Node ol dChild) raises(DOVEXception);

Page 5 of 14

Node appendChil d(in Node newChild) raises(DOVEXception);

Node cl oneNode(in bool ean deep);

void nornalize();

bool ean i sSupported(in DOVString feature, in DOVBtring version);
readonly attribute DOVStri ng nanespaceURl ;

attribute DOVBtring prefix; // raises(DOVException) on setting
readonly attribute DOVString | ocal Nane;

}s

Definition group NodeType
An integer indicating which type of node this is.
Note: Numeric codes up to 200 are reserved to W3C for possible future use.
Defined Constants

Pl CBODY_NCDE

The node is a picbody

LAYER _NODE

The node is a | ayer

GROBJECT_NODE

The node is a grobject

PARA NODE

The node is a para

GDATA _NODE

The node is a gdata

SUBPARA _NODE

The node is a subpara

Attributes
chi | dNodes oftype Nodeli st, readonly

A NodeLi st that contains all children of this node. If there are no children, this is a
NodelLi st containing no nodes.

firstChild oftype Node, readonly
The first child of this node. If there is no such node, this returns nul | .

| ast Chi | d of type Node, readonly
The last child of this node. If there is no such node, this returns nul | .

next Si bl i ng oftype Node, readonly
The node immediately following this node. If there is no such node, this returns nul | .

nodeNane oftype DOVSt ri ng, readonly
The name of this node, depending on its type; see the table above.

nodeType oftype unsi gned short, readonly
A code representing the type of the underlying object, as defined above.

owner Docunent of type Docunent, readonly
The Docurnent object associated with this node. This is also the Docunent object used to
create new nodes. When this node is a Docunent ora Docunent Type
which is not used with any Docunent yet, thisis nul | .

par ent Node of type Node, readonly
The parent of this node. All nodes, except Att r , Docunent ,

previ ousSi bl i ng oftype Node, readonly

Page 6 of 14

The node immediately preceding this node. If there is no such node, this returnsnul I .

Methods

hasAttri butes
Returns whether this node (if it is an element) has any attributes.
Return Value
bool ean true if this node has any attributes, f al se otherwise.
No Parameters
No Exceptions

hasChi | dNodes
Returns whether this node has any children.
Return Value
bool ean true if this node has any children, f al se otherwise.
No Parameters
No Exceptions

i nterface Docunent : Node {
readonly attribute El ement docunentEl enent;

NodeLi st get El enment sByTagNane(i n DOVBtri ng t agnane) ;

El enent get El enentByld(in DOVBtring el ementld);

NodelList getElementsByAttributeNameValue (in DOMString name, in DOMString value);
NodelList getElementsByURIFragment (in DOMString urifragment);

readonly attribute Docunent Type doctype;
readonly attribute DOM npl enentation inplenmentation;

El enent createEl enent (in DOVBtring tagNane) //rai ses(DOVException);
Docunent Fragnent creat eDocunent Fragnent () ;

Text createText Node(in DOVBtring data);

Conmment createConment (in DOVBtri ng data);

CDATASect i on creat eCDATASection(in DOVString data) //rai ses(DOVException);
Processi ngl nstruction createProcessinglnstruction(in DOVBtring target, in
DOVBtring data) // raises(DOVException);

Attr createAttribute(in DOVString name) //rai ses(DOVEXception);
EntityReference createEntityReference(in DOVString nane)

/Irai ses(DOVEXception);

Node i nport Node(in Node inportedNode, in bool ean deep)

/Irai ses(DOVEXception);

El enent createEl emrent NS(i n DOVBt ri ng namespaceURl, in DOVBtring

qual i fi edNane) //rai ses(DOVEXcepti on);

Attr createAttributeNS(in DOVString namespaceURl, in DOVString

qual i fi edNane) //rai ses(DOVExcepti on);

NodeLi st get El enent sByTagNaneNS(i n DOVStri ng namespaceURI, in DOVString

| ocal Nare) ;

}s

Attributes

docunent El enment of type El enent, readonly
This is a convenience attribute that allows direct access to the child node that is the root
element of the document.

Page 7 of 14

Methods
get El enent Byl d
Returns the El enrent whose | D is given by el enent | d. If no such element exists, returns
nul | . Behavior is not defined if more than one element has this | D.
Note: The DOM implementation must have information that says which attributes are of type
ID. Attributes with the name "ID" are not of type ID unless so defined. Implementations that do
not know whether attributes are of type ID or not are expected to return nul | .
Parameters
el enentld oftype DOMSt ring
The unique i d value for an element.
Return Value
El ement The matching element.
No Exceptions

get El enment sByTagName
Returns a NodeLi st of all the El enent s with a given tag name in the order in which they
are encountered in a preorder traversal of the Documnent tree.
Parameters
t agnane oftype DOMVSt ri ng
The name of the tag to match on. The special value "*" matches all tags.

Return Value
NodelLi st

A new NodelLi st object containing all the matched El enent s
No Exceptions

i nterface NodelList {
Node iten(in unsigned | ong index);
readonly attribute unsigned | ong | ength;

s

Attributes

| engt h oftype unsi gned | ong, readonly
The number of nodes in the list. The range of valid child node indicesis0to | engt h- 1
inclusive.

Methods
item
Returns the i ndexth item in the collection. If i ndex is greater than or equal to the number of
nodes in the list, this returns nul | .
Parameters
i ndex oftype unsi gned | ong
Index into the collection.
Return Value
Node
The node at the i ndex th position in the NodeLi st, or nul | if that is not a valid index.
No Exceptions

Page 8 of 14

interface El ement : Node {

readonly attribute DOVBtring tagNane;

DOVt ring getAttribute(in DOVBtring nane);

void setAttribute(in DOVString nane, in DOVBtring val ue)

/Irai ses(DOVEXception);

voi d renoveAttribute(in DOVBtring nane) //rai ses(DOVException);
NodeLi st get El enent sByTagNanme(in DOVStri ng nane);

bool ean hasAttribute(in DOVString nane);

Attr getAttributeNode(in DOVSBtring nane);

Attr setAttributeNode(in Attr newAttr) //rai ses(DOVException);

Attr renoveAttributeNode(in Attr oldAttr) //rai ses(DOVException);
DOVString get AttributeNS(in DOVBtri ng nanmespaceURlI, in DOVBtring

| ocal Nane) ;

void setAttributeNS(in DOVBtring namespaceURI, in DOVBtring qualifiedNare,
in DOVBtring value) //rai ses(DOVException);

voi d renoveAttributeNS(in DOVString nanespaceURlI, in DOVBtring | ocal Nane)
/I rai ses(DOVEXxception);

Attr getAttributeNodeNS(in DOMString namespaceURl,in DOVSBtring | ocal Nane);
Attr setAttributeNodeNS(in Attr newAttr) //raises(DOVException);

NodeLi st get El enent sByTagNaneNS(i n DOVStri ng namespaceURlI, in DOVString

| ocal Nane) ;

bool ean hasAttri buteNS(in DOVBtri ng nanmespaceURI, in DOVBtring | ocal Nane);

}s

Attributes
t agNane of type DOVSt r i ng, readonly

The name of the element. For example, in:
<el ement Exanpl e i d="deno" >

</ el enent Exanpl e>

t agNanme has the value " el enent Exanpl e". Note that this is case-preserving in XML, as
are all of the operations of the DOM. The HTML DOM returns the t agNane of an HTML
element in the canonical uppercase form, regardless of the case in the source HTML
document.

Methods

getAttribute
Retrieves an attribute value by name.
Parameters
nanme oftype DOVBtri ng
The name of the attribute to retrieve.
Return Value
DOVBt ri ng
The At t r value as a string, or the empty string if that attribute does not have a specified or
default value.
No Exceptions

get El ement sByTagNane
Returns a NodeLi st of all descendant El enent s with a given tag name, in the order in
which they are encountered in a preorder traversal of this El enent tree.
Parameters
name of type DOVBt ri ng
The name of the tag to match on. The special value "*" matches all tags.
Return Value

Page 9 of 14

NodeLi st A list of matching El ement nodes.
No Exceptions

hasAttribute
Returnst r ue when an attribute with a given name is specified on this element or has a
default value, f al se otherwise.
Parameters
name oftype DOVBtri ng
The name of the attribute to look for.
Return Value
bool ean true if an attribute with the given name is specified on this element or has a
default value, f al se otherwise.
No Exceptions

removeAttri bute
Removes an attribute by name. If the removed attribute is known to have a default value, an
attribute immediately appears containing the default value as well as the corresponding
namespace URI, local name, and prefix when applicable.
Parameters
name oftype DOVBtri ng
The name of the attribute to remove.
Exceptions
DOVExcept i on
NO_MODIFICATION_ALLOWED_ERR: Raised if this node is readonly.
No Return Value

setAttribute
Adds a new attribute. If an attribute with that name is already present in the element, its value
is changed to be that of the value parameter. This value is a simple string; it is not parsed as it
is being set.
Parameters
nanme oftype DOVBtri ng
The name of the attribute to create or alter.
val ue oftype DOVBt ri ng
Value to set in string form.
Exceptions
DOVExcept i on
INVALID_CHARACTER_ERR: Raised if the specified name
contains an illegal character.
NO_MODIFICATION_ALLOWED_ERR: Raised if this node
is readonly.
No Return Value

i nterface Get WbCGVDocunent {
Document get WebCGVDocument () //rai ses(DOVException);
1

Methods
get WebCQVDocunent

Returns the Document object for the referenced WebCGM document\
No Paremeters

Page 10 of 14

Return value

Document The Document object for the referenced WebCGM Document
Exceptions

DOMException NOT_SUPPORTED_ERR. No Document object is available

i nterface Event {

readonly attri bute Event Target target;
readonly attribute EventTarget current Target;
readonly attribute DOVBtring type;

/'l PhaseType

const unsigned short CAPTURI NG PHASE = 1;
const unsigned short AT_TARGET = 2;

const unsi gned short BUBBLI NG PHASE = 3;
readonly attribute unsigned short eventPhase;
readonly attribute bool ean bubbl es;
readonly attribute bool ean cancel abl e;
readonly attribute DOMIi neStanp tinmeStanp;
voi d stopPropagation();

voi d preventDefaul t();

void initEvent(in DOVString event TypeArg,
i n bool ean canBubbl eArg,

i n bool ean cancel abl eArg);

b

Attributes

current Target oftype Event Tar get, readonly
Used to indicate the Event Tar get whose Event Li st ener s are currently being
processed. This is particularly useful during capturing and bubbling.

t ar get oftype Event Tar get , readonly
Used to indicate the Event Tar get to which the event was originally dispatched.

t ype oftype DOVSt ri ng, readonly
The name of the event (case-insensitive). The name must be an XML name.

i nterface MouseEvent : Ul Event {

readonly attribute |ong screenX;

readonly attribute |ong screeny;

readonly attribute long clientX

readonly attribute long clienty;

readonly attribute bool ean ctrl Key;
readonly attribute bool ean shiftKey;
readonly attribute bool ean altKey;
readonly attribute bool ean net aKey;
readonly attribute unsigned short button;
readonly attribute EventTarget rel atedTarget;
voi d initMuseEvent(in DOVBtring typeArg,

Page 11 of 14

bool ean canBubbl eAr g,

bool ean cancel abl eAr g,

vi ews: : Abstract Vi ew vi ewAr g,
| ong detail Arg,

| ong screenXArg,

| ong screenYArg,

I ong client XArg,

I ong client YArg,

bool ean ctrl KeyArg,

bool ean al t KeyAr g,

bool ean shiftKeyArg,

bool ean net aKeyAr g,

unsi gned short buttonArg,

i
[
i
[
[
[
[
[
i
i
[
i
[
in Event Target rel atedTargetArg);

53 3035035 3 305 53 3335 O

}s

Attributes

al t Key oftype bool ean, readonly
Used to indicate whether the 'alt’ key was depressed during the firing of the event. On some
platforms this key may map to an alternative key name.

butt on oftype unsi gned short , readonly
During mouse events caused by the depression or release of a mouse button, but t on is
used to indicate which mouse button changed state. The values for but t on range from zero
to indicate the left button of the mouse, one to indicate the middle button if present, and two to
indicate the right button. For mice configured for left handed use in which the button actions
are reversed the values are instead read from right to left.

client X oftype | ong, readonly
The horizontal coordinate at which the event occurred relative to the DOM implementation’s
client area.

clientY oftype | ong, readonly

The vertical coordinate at which the event occurred relative to the DOM implementation’s client
area.

ctrl Key oftype bool ean, readonly
Used to indicate whether the 'ctrl’ key was depressed during the firing of the event.

net akey oftype bool ean, readonly
Used to indicate whether the 'meta’ key was depressed during the firing of the event. On some
platforms this key may map to an alternative key name.

screenX oftype | ong, readonly
The horizontal coordinate at which the event occurred relative to the origin of the screen
coordinate system.

screenY oftype | ong, readonly
The vertical coordinate at which the event occurred relative to the origin of the screen
coordinate system.

shi ft Key oftype bool ean, readonly
Used to indicate whether the ’shift’ key was depressed during the firing of the event.

The different types of Mouse events that can occur are:

Page 12 of 14

click
The click event occurs when the pointing device button is clicked over an element. A click is
defined as a mousedown and mouseup over the same screen location. The sequence of
these events is:
nousedown
nouseup
click
If multiple clicks occur at the same screen location, the sequence repeats with the det ai |
attribute incrementing with each repetition. This event is valid for most elements.
Bubbles: Yes
Cancelable: Yes
Context Info: screenX, screenY, clientX, clientY, altKey, ctrikey, shiftkey, metaKey, button,

mousedown
The mousedown event occurs when the pointing device button is pressed over an element.
This event is valid for most elements.
Bubbles: Yes
Cancelable: Yes
Context Info: screenX, screenY, dientX, clientY, altkey, ctrlKey, shiftkey, metaKey, button,
detail

mouseup
The mouseup event occurs when the pointing device button is released over an element. This
event is valid for most elements.
Bubbles: Yes
Cancelable: Yes
Context Info: screenX, screeny, clientX, clientY, altkey, ctrlKey, shiftkey, metaKey, button,
detail

mouseover
The mouseover event occurs when the pointing device is moved onto an element. This event
is valid for most elements.
Bubbles: Yes
Cancelable: Yes
Context Info: screenX, screenY, clientX, clientY, altkey, ctrlKey, shiftkey, metaKey

mousemove
The mousemove event occurs when the pointing device is moved while it is over an element.
This event is valid for most elements.
Bubbles: Yes
Cancelable: No
Context Info: screenX, screenY, clientX, clientY, altKey, ctrlKey, shiftkey, metaKey

mouseout
The mouseout event occurs when the pointing device is moved away from an element. This
event is valid for most elements..
Bubbles: Yes
Cancelable: Yes
Context Info: screenX, screenY, clientX, clientY, altkey, ctrlKey, shiftkey, metaKey,

Other possibilities: Key events, mutation events...
Need use cases to determine if they are required.

Page 13 of 14

CGM Open would like to express our thanks to Dave for allowing his suite to be used for the meeting.

Page 14 of 14

