
XML’Europe 99

April 99 Page 1

Implementing a viable architecture
for standardized Intelligent Graphics

Co-Author: Maryse DA PONTE
Title: Research Engineer.
Company : Aerospatiale Division AIRBUS
Address
Service A/BIS/A, BP D0611
316, route de Bayonne
Toulouse
France
31060 TOULOUSE Cedex 03
Email:maryse.da-ponte@avions.aerospatiale.fr.
Biography

Maryse DA-PONTE joined Aerospatiale in 1989 and has worked in the electronic
documentation since 1992. From 1994, she has been involved in the graphics area and
has joined the ATA (Air Transport Association) /AIA (Aerospace Industry Association)
Graphics Working Group which is working on the concept of Intelligent Graphics.
Maryse is a graduate engineer in Computer Science from the CNAM (Conservatoire
National des Arts et Métiers) (France).

Co-Author: Marco GOERTZ
 Title: Software Engineer
Company: Inso Corporation
Address:
299 Promenade Street
Providence, RI 02908
USA
Email: mgoertz@inso.com
Biography

Marco GOERTZ joined Inso Corporation in 1998 for his technical expertise in
"intelligent graphics". He created the "intelligent graphics" project MetaWeb during his
graduation thesis in a joint venture with Ematek GmbH (Germany) in early 1996. In
August 1996, he was hired by Ematek and has been responsible for the MetaWeb
development since then. Over the last 3 years he has been working closely with
Henderson Software Inc. (HSI) on multiple projects from Germany and in the USA.

He has made significant contributions for the WebCGM profile developed by CGM
Open and the W3C.

Marco is a graduate engineer in Mechanical Engineering from the Technical

XML’Europe 99

April 99 Page 2

University of Braunschweig (Germany). He is specialized in Graphical User Interface
(GUI) design and development and has created applications for companies such as
Siemens and Volkswagen.

Co-Author:Lofton HENDERSON
Title: Dir. Adv. Graphics Devt.
Company :Inso Corporation
Address
1919 Fourteenth St,
 Ste 610,
Boulder
USA
CO 80302
Email:lofton@cgm.com.

Biography
Prior to joining Inso Corporation in 1997, Lofton Henderson presided over

Henderson Software, Inc., specializing in CGM technology, products, and services for 12
years. He has taught and lectured extensively on CGM and other computer graphics
topics, and is co-author of the "The CGM Handbook" (Henderson and Mumford,
Academic Press, 1993, 450 pp.), an in-depth look at the standard and its application in the
real world. He has worked on the ANSI and ISO committees responsible for graphics
standards for 15 years, during which time he has had roles ranging from CGM document
editor to Convenor of the ISO SC24/WG6 Metafiles Working Group. He has made
substantial contributions to the definition of the significant industry CGM profiles: ATA
GRexchange and IGexchange, PIP, J2008, RIF, and the recently approved WebCGM
W3C Recommendation. He currently is chairman of the CGM Open Consortium.

Foreword
The first parts of this paper recap the contents of "Intelligent Graphics: Towards a

viable architecture using the most appropriate standards", Da-Ponte, Duluc, and
Henderson, 1998. That article discussed the origin and requirements of Intelligent
Graphics, and proposed the general terms of an optimal, open, and interoperable
architecture. The later parts of the present paper develop the ideas of the original paper
further, illustrating them with a mockup, and exploring further standardization of critical
components of the system.

Introduction
The WEB technologies offer powerful and user-friendly functionality for consultation

of electronic documentation. They enable in particular a quick access to the correct
information. This functionality is available for text content. But documentation also
includes numerous graphics which enable a rapid understanding of information.
However, the electronic consultation of graphics does not offer the same functionality as

XML’Europe 99

April 99 Page 3

text does for on-line consultation. Current standardized electronic graphics are limited.
They do not enable for example, links from a graphic’s objects to another information or
retrieval on the content they include. These limitations are because they do not enable
any computer processing. Only human eyes are able to interpret them.

Therefore, work has been initiated to specify more powerful electronic graphics. The
ATA (Air Transport Association) has developed the concept of “Intelligent Graphics”
and has worked on this concept for the aeronautical domain for several years. Recently,
the W3C has defined a set of requirements to use interactive graphics on the WEB. This
article will present work done in this domain, and more particularly in the aeronautical
domain.

We will introduce, first, the specific needs of the aeronautical domain and the work
done by ATA around the “Intelligent Graphics” concept.

Second, there is no single solution today to implement this concept. In addition, new
standards such as HyTime and XML offer new possibilities, which could also be useful
for graphics. So, Aerospatiale initiated a study to define a viable architecture using the
most appropriated standards for standardized Intelligent Graphics. We will present the
results of this study in a second part.
What about "third part". To validate the results of the study and explore the concept of
“Intelligent Graphics” in more detail , a mock-up has been developed. We will present it.

Finally, the study and the implementation of the mockup has initiated some
discussions on issues, general characteristics of the companion file, and the need for a
standard API. These issues will be discussed in a fourth part and will enable to conclude
on work to be done in the future.

ATA work
Let’s see first the work done by the ATA around the “Intelligent Graphics “

concept. A short introduction on the specific characteristics of aeronautical technical
documentation will present the needs of this domain.

Aeronautical context
The aeronautical technical documentation, including AIRBUS documentation, has

specific characteristics. It is varied (different domains, different types of information),
and it is also characterized by large quantities of data, numerous customizations, short
revision cycles and a long life. A high level of standardization is also needed.

The aeronautical technical documentation includes many graphics. An AIRBUS
Illustrated Parts Catalog can include more than one hundred thousand graphics. Their
uses are frequent and varied. Sometimes, experienced mechanics only take the graphic to
repair a failure. Technical documentation users also use them as a means of navigation in
the large-volume documentation.

In order to manage all these characteristics, technical documentation is migrating to
Electronic Structured Documentation which offers powerful potentialities in terms of

XML’Europe 99

April 99 Page 4

consultation, edition and management for text. To obtain the same potentialities for
graphics, the ATA has developed the “ Intelligent graphics” concept.

ATA "Intelligent Graphics" concept
The ATA concept of "Intelligent Graphics" defines standardized structured

graphics, which could be used by applications in an interactive way. The "Intelligent
Graphics Requirements" specifications [IGREQ22] gives some base principles for the
structuring requirements and defines the functionality that "Intelligent Graphics" must
support.

ATA MODELING
ATA specifications [IGREQ22] give some basic Object-oriented requirements for

structuring graphics. As the basic need is to access objects smaller than the whole picture,
the picture is structured in objects, called "graphical objects". These objects are logical
units, such as an engine or a locator. They contain a graphical representation of the
object, the semantics associated with these objects and can include others objects.
To be accessible, each graphical object must be identified. A logical graphical object can
have relationships to other objects (graphical or SGML). The semantics of the logical
graphical objects, also called properties by the ATA specifications [IGREQ22], is
described via attributes.

"INTELLIGENT GRAPHICS" FUNCTIONALITY
ATA defines four types of functionality. Three of them will be presented here. In

regard of the state of the art, the last functionality, the analysis seems more difficult to be
implemented today in a standard way and will not therefore be studied here.

Q Navigation needs
The first functionality specified in the "Intelligent Graphics" concept is navigation.

It represents the most important functionality in terms of needs. It permits, for example,
the navigation from an illustration of a component to another illustration of the same
component containing more details. This functionality represents all the capabilities of
browsing from a logical graphical object to another documentation unit. It will be done
from a logical graphical object to another logical graphical object and/or textual element.
For example, a fault code can refer to two figures.

Q Query needs
The second functionality specified in the "Intelligent Graphics" concept is the

query. One example is "based on a reference designator or an equipment list number,
being able to access illustrations containing a particular part". This functionality
represents all the capabilities of accessing a logical graphical object using query
mechanisms.

XML’Europe 99

April 99 Page 5

Different types of query are necessary, full text search, queries on the structure, e.g., find
all the illustrations of chapter "31-30-00" and queries on properties, e.g. finding the
graphical object representing the part whose part number is "D60192". Some queries mix
both types.

Q Extraction needs
The third functionality specified in the "Intelligent Graphics Requirements"

specifications is the extraction of data, e.g., identification of the reference designator or
equipment list number associated with a component in a graphical object. This
functionality will enable the end user to access the non-graphic information from an
illustration. The extracted information could be or not a part of the visible illustration.
Despite there being a subtle difference between the goals of extraction and query, in
terms of exchange specifications, the extraction requirements are almost the same as the
query requirements. The extraction is done by the applications after the query.

Let’s see now how this functionality is supported by graphics.

Aerospatiale study
The ATA 2100 specifications recommend two ways to exchange structured graphics. ,

a pure CGM solution or a mixed solution using CGM plus SGML. Thus, the "semantic"
content may reside either in the CGM, or in the SGML. The specification of the latter
solution needs to be completed to specify the roles of each standard in a detailed way. In
addition, the ATA specifications have not yet taken in account new standards such as
XML, Hytime, XLL.

So Aerospatiale, in cooperation with HSI/Inso, made a study to evaluate the following
standards: SGML, Hytime, XML and determine if these standards could be used to model
structured graphics. For each standard, the advantages and drawbacks have been
evaluated. This study has enabled us to choose the best standards for implementing a
viable architecture for structured and interactive graphics.

Study of the standards

SGML
The SGML (Standard Generalized Markup Language) enables representation of the

structure in a rigorous way enabling the analysis and treatment of this structure by
computers, independently of the platforms and of the software.

SGML enables the definition of generic structures for particular types of document -
the DTD (Document Type Definition). A markup language is built to express the
different constraints existing on the structure and contents of a given class of documents.
The DTD is interpretable by computers.

The SGML standard does not define a query language. However, SDQL (Structured

XML’Europe 99

April 99 Page 6

Documents Query Language), included in DSSSL (Document Style and Semantic
Specifications Language) defines a query language well adapted for handling structured
documents (SGML in particular).

SGML presents some limitations for links. Links on objects are possible only in the
scope of the same SGML document. They are enabled only between special elements
which have been identified as target elements (using ID(s) attribute) and special elements
that have been identified as targeting elements (using IDREF(s) attribute). For external
links, SGML interprets the external document as an indivisible document, because there
are no means to measure, locate and count within data. The XML standards family tries
to remove these limitations.

XML AND XLL
The standard XML (eXtensible Markup Language), based on SGML, introduces a

new type of document, the well-formed document: a structured document, which can be
processed without its DTD. It makes the processing simpler.
Another standard of XML family, XLL (eXtensible Linking Language) is the process of
specifying high-powered hypermedia linking and pointers to very specific locations
within XML data. This standard has been strongly influenced by HyTime and TEI
extended pointers.
The XLL subset, XPointer provides a simple syntax for pointing to elements and other
parts of XML documents regardless of whether they have IDs.
The XLL subset, XLink provides a way to collect groups of these pointers to make entire
links: connections between arbitrary numbers of data objects. It permits you to identify
your own linking elements with any names you want, and defines several sub-types of
link. The simplest link, called "simple inline" link, is a one-way link from the link's own
location to one other place and works like the HTML elements. XLink also provides a
way to collect links outside of the documents that they reference, the "out of line" link.
XLink links can also include metadata about individual links and pointers. For example,
they can specify a formal role or function for each individual end. Finally, XLink
provides some very rudimentary behavior control.

CGM
CGM (Computer Graphics Metafile) is the ISO standardized language to represent

two-dimensional graphics with vector or raster data, independently of the platforms and
of the software. CGM defines a functional specification, independent of the encoding of
the metafiles, and three types of encoding. As it supports compressed raster and symbols
libraries, CGM is well adapted for technical documentation.

The CGM Application Profile (A.P.) defines how a domain uses CGM, e.g. the ATA
Application Profile defined for the civil aeronautical domain. A parser checks the
conformance of the metafile to CGM and to the Application profiles. This latter, which
also enables definition of semantics specific to the domain, will become more important

XML’Europe 99

April 99 Page 7

with "structured graphics". However, as the Application profile is not written in a
computer-understandable way, CGM tools are not able to adapt automatically to all
profiles.

The APplication Structure (APS) CGM element enables the grouping of graphical
elements into logical objects meaningful to and accessible by applications. APS are based
on the mark-up principle and delimited by mandatory tags. The APS has a type which
permits classes of APS to be defined. It may be described by attributes, which provide the
capability to associate non-graphical information with the logical graphical object. APS
enables the metafile to be structured in a hierarchical structure. The WEB CGM profile,
recently defined by CGM Open and W3C specifies interactive graphics with APS.

Two models of APS are available, the embedded APS which includes the graphical
primitives of the objects and implicit boundaries, and the overlay APS which includes
explicit boundaries of the object. The embedded APS offers possibilities that are more
powerful: no data redundancy, exact boundaries and easy maintenance. The overlay
model is useful for legacy, and raster data.

APS are specified and standardized by means of the A.P. However, today, no
formalism exists in CGM for describing content model and APS relationships, such as
DTDs. No occurrence symbols, connectors or reduced possibilities are available for
typing objects. Specifying at least the metadata content models should be considered as a
high priority requirement for the widespread use of structured graphics profiles.

No standard way is defined in CGM to specify the links between graphics or between
graphics and other types of data. The only thing useable by a link application is the
capability of defining an ID for a given APS. This is a step forward to the link
capabilities. However, a uniform solution is necessary.

No query language is available today to manipulate CGM data and in particular
Version 4 data.

The choice of standard
The study of the standards has led to the following conclusions. SGML/XML is a

well-suited standard for describing structured documents. Regarding SGML, it is obvious
that it lacks graphic specifications to handle graphics. CGM is a well-suited standard for
describing 2D graphics despite the fact that some standardized formalisms are missing to
handle structure. However, each standard offers part of the required functionality. If we
use both standards, where is the frontier between use of each?

STRUCTURE MODEL
Studying structured graphics has highlighted that the use of something equivalent to

a DTD to define a structure model of a graphic is necessary. As today, CGM does not
offer a formalism to define a complete structure model, it seems that SGML/XML DTD
is a good means to describe this structure. As specified by the XML principles, this
structure model will not be mandatory for consultation.

Due to the growth of XML, we think this standard will make numerous tools available

XML’Europe 99

April 99 Page 8

and will be the substitute for many uses of SGML. Therefore, we recommend that every
new feature defined with SGML must be "XML-compatible" (conversion to XML must
be possible at consultation).

SPECIFY AND STRUCTURE GRAPHICAL DATA
CGM is already known as a powerful standard for representing graphics. CGM

functional specifications are the most appropriate specifications to describe graphics. All
the graphical data, such as the graphical primitives and the boundaries of the objects, will
be specified with CGM. The logical objects will be defined by using CGM APS
(Application Structure feature). For new graphics, the embedded model, more powerful,
is recommended. Thus, the boundaries of the objects will be automatically managed by
the tools. The overlay model will only be used for the raster data, particular for photos
and legacy CGM.

PROPERTY SPECIFICATIONS
Considering the current state of the art, especially the fact that CGM has no

modeling capability and the fact that we choose to use a DTD for model control we
decided to use a SGML/XML file for handling properties of the CGM metafile. This file,
called "companion file" will be attached to the CGM file. The structure of the graphic,
described with APS, will be duplicated in this SGML companion. Properties will then be
added to the resulting structure in this SGML file. This companion file will enable the
graphics to be checked against the model defined by the DTD.

LINK SPECIFICATIONS
Today, the most powerful standard to define exchangeable links is XLL of the

XML family. As XML has a more pragmatic approach than HyTime, it seems XML has a
good future and numerous tools will probably be available.

QUERY LANGUAGE
Concerning the "Data Extraction" and "Query" needs, the first step for

implementing intelligent graphics is to verify that the data on which queries and data
extractions have to be achieved are correctly identified. Then the query and data
extraction could be performed using conventional query languages. Standards for more
powerful query languages are in development in several forums, but not yet advanced
enough for review or choice. So, in the short term, existing query languages should be
used and a survey of the new query languages should be done.

CHOICE CONCLUSION
The chosen solution is not perfect. It raises the classic issue of duplicating

information. However, these choices are made in regard of the state of the art. We
considered that SGML/XML tools are already available and that it will be easier to

XML’Europe 99

April 99 Page 9

handle this issue than to make CGM standards evolve and CGM vendors implement them
in a short time. Besides, we can imagine that a structure will be generated automatically
from another.

Let’s see now how these results have been implemented in a mock-up.

Presentation of the mock-up
From the results of the study, Aerospatiale has developed a research tool to

investigate further the concept of “Intelligent Graphics”. We will see first the mock-up in
terms of functionality. In a second part, the basic principles of the mock-up will be
presented.

Mock-up functionality
The mockup illustrates the consultation of interactive graphics and presents three

types of functionality defined by the ATA ”Intelligent Graphics” concept, navigation,
query and extraction.

INTERACTIVITY PRINCIPLE
The mock-up displays interactive graphics. When the cursor passes through an

object, the cursor changes shape and the object is highlighted. If you click on it, a
window appears and displays the semantics associated with the object. If links are
associated to the objects, they are also displayed in the windows.

NAVIGATION FUNCTIONALITY
The mock-up implements the navigation functionality, for graphical objects as well

as for text elements. The innovation here is the possibility to navigate from an object of
the graphic. Each object of a same graphic can have specific links.

Let’s now take a concrete example : When a user reads a maintenance procedure,
he can, for example, click on the reference of the figure and navigate immediately to the
figure. He can also click on a particular part number within the maintenance procedure
and navigate to this particular part within the graphic. In this case, the graphic is
displayed with the part concerned highlighted (cf. Fig. 1 : Navigation to objects inside the
graphic). Thus, the user immediately sees the correct part. This functionality is very
useful for wiring schematics which include numerous small objects. On a graphic, the
user also has the possibility to click on a particular part. If a link is specified on this
particular part, the user can navigate to another graphic which gives for example a more
detailed view of the part. When the user studies the graphic of a maintenance procedure,
he also has the possibility to navigate from this graphic to the equivalent graphic of the
parts catalog.

XML’Europe 99

April 99 Page 10

Fig. 1 : Navigation to objects inside the graphic

QUERY FUNCTIONALITY
The mock-up implements the query functionality on the graphics. The purpose of

this second functionality is to find objects within the graphics based on data associated to
the objects as search criteria, e.g. finding the graphical object representing the part whose
part number is "D60192".. This functionality also enables queries on the structure, e.g.,
find all the illustrations of chapter "31-30-00". Often, queries mix both types.

Let’s now take a concrete example. When a user views a graphic, he can for
example make a query to locate all the parts sold by the same vendor. He can also make a
query to highlight all the “screws” of the graphic. To do this query, the mock-up displays
a window in which the user enter his search criteria. Thus, the user is not obliged to use
query language, sometimes too complicated for documentation users. When the user
validates the search criteria, all the objects which match the search criteria are highlighted
in the graphic.

The mock-up only implements some criteria to do queries (cf. Fig. 2: Query on
semantic). But these criteria could be more numerous, depending on the graphic
modeling.

XML’Europe 99

April 99 Page 11

Fig. 2 : Query on semantic

EXTRACTION FUNCTIONALITY
The third functionality implemented by the mock-up is the extraction of data, e.g.,

extraction of the reference designator or equipment list number associated with a
component in a graphical object.

Let’s come back to a concrete example. In the last example, after a query, the user has
seen all the parts sold by a particular vendor. With the extract functionality, the user may
display all the information concerning these parts. Another possibility of the mockup
enables the user to extract all the information associated with all the objects of the
graphic. (cf. Fig 3: Extraction of data).

Today, the mock-up only enables query on one graphic at any one time. To implement
the queries on several graphics, a new step is necessary; the management of graphics in a
repository.

XML’Europe 99

April 99 Page 12

Fig 3: Extraction of data

Intelligent Graphics architecture
Having seen the functionality offered by the mock-up, we will present the principles

of the mock-up which enable this functionality to be implemented.
The mock-up manipulates graphics specified in conformance with the results of the

study, a CGM Version 4 associated to an XML companion file. This latter includes the
ids, the structure and the semantic of each object.. The XML files are manipulated via a
DOM (Document Object Model) API.

Let’s see the architecture and the general working of the mock-up with an example. In
this latter, the user follows a hypertext link which links a graphical object (Document A)
to a textual procedure (Document B).

XML’Europe 99

April 99 Page 13

WEB navigator

Hypertext engine

Graphic API XML DOM

CGM
Graphic

XML
associated file

<?xml
version="1.0"?>
<doc ID="FM5
2792414ALM0 00"
type="cgm"
content="AMM406.
html">
<title>Transduce
r Units</title>
<semantic>…
</doc>

Document A
Interactive graphic

Document B
Textual procedure

1 2

3

CGM Viewer

 Fig 4: The mock-up architecture

The working of the mock-up is as follows :
Step 1 : When the user clicks on the CGM graphical object, the event is sent to the

hypertext engine with the object identifier.
Step 2 : The hypertext engine interrogates the XML file to extract the data and the

links associated to this object.
Step 3: The hypertext engine commands the display of the textual procedure

which is the target of the link.
In terms of languages and tools, the mock-up was developed in JavaScript which

enables quick development. It uses an Internet navigator (Microsoft Internet explorer 5.0.
version beta 2) which offers interesting XML possibilities and a viewer CGM,
(ActiveCGM browser from InterCAP). Vbasic script has been used to program orders to

XML’Europe 99

April 99 Page 14

the viewer.

The work on this mock-up and the previous study have opened several issues:
The first issue concerns the consultation ergonomics. Currently, the interactive graphics offer new
possibilities (selection, navigation, query, extraction). These new functions must be accessible by
the user through an interface as simple and natural as possible.

The second issue is linked to a job study on the content of the graphics : How we will model the
graphics ? Do we need one or several types of modeling depending on the types of graphics ?
Which navigation links do we need to implement? Which are the most pertinent search criteria?

It is also important to study the possibilities to upgrade the creation environment of these new
graphics.

The need for a standardized and powerful graphics API has been highlighted during the
development of the mock-up.

Two of these open issues, the companion file and the CGM Viewer API
Considerations will be presented in a more detailed way.

Companion File and CGM Viewer API
Motivation

The mock-up work illustrates the feasibility of the proposed IG architecture, and has
demonstrated some interesting techniques. However, it is based on ad hoc and
proprietary definitions of at least: companion file format; and, the interface between the
browser (hypertext engine) and the CGM viewer.

Because a principal goal of this work is an optimal architecture that is open and
interoperable, then standard, open specifications of the companion file and browser-
viewer interface (the "graphics API") are necessary.

We consider both of these to be significant future work projects, but we address some
of the basic principles now, in particular in furtherance of a suitable standard "graphics
API".

Companion File

CONCEPTS
A Structured Graphic (SG), is a CGM graphic, which is marked up with V4

Application Structures, to define objects of application interest in the metafile, but which
contain no metadata (intelligence) other than the APS 'id', APS 'type', and possibly an
optional APS Attribute of type 'region'.

An Intelligent Graphic (IG), is a Structured Graphic together with other associated
metadata (e.g., hyperlinks, search keys, etc), which may either be internal to the CGM or
external (in a "companion file").

A principal conclusion of the Optimal IG Architecture study is: the intelligence of an

XML’Europe 99

April 99 Page 15

Intelligent Graphic should be external to the CGM, segregated into a separate
"Companion File" (coded in XML).

GOALS OF EXTERNALIZING INTELLIGENCE
The principal goals of externalizing the metadata from the CGM are to:
1. Improve the maintainability of the IG, by separating the relatively volatile

metadata (intelligence) from the less volatile graphics (SG).
2. Increase the re-usability of the graphic, by a allowing multiple distinct sets of

metadata (intelligence) to be associated with a single graphic.
These two goals, along with the interoperability goal, raise some key issues about a

standardized companion file.

A KEY ISSUE
We consider that the detailed discussion of a standard companion file is beyond the

scope of this paper (for details see, for example, "Graphical Hotspot Definition - A
Common ATA/AECMA Approach", Cruikshank & Zimmerman, 1999).

However some issues about companion file format affect the overall system
architecture, and in particular the graphics viewer API specifications.

One principal issue illustrates this: Should the companion file replicate the structure
and hierarchy that exists within the SG, or should it only associate the appropriate
properties and metadata with the objects in the SG?

Replicating the whole hierarchy increases maintenance problems of the IG, and
compromises the maintainability goal (above) of the companion file architecture. On the
other hand, if the companion file does not replicate structure, then it is required that the
browser (hypertext engine) be able to obtain this from the CGM instance (via the CGM
viewer, presumably).

About this issue we conclude: In an optimal I.G. architecture, a standard companion
file should not replicate hierarchy, but rather should only associate intelligence properties
(metadata) to the objects in the SG, by reference to the IDs of those objects.

This leads us to the API requirement: The graphics API must have sufficient power to
expose all structure and hierarchy of SG instances, whether the IG metadata is external
(companion file) or internal.

CGM Viewer API

CGM VIEWER API CONSIDERATIONS
In order to achieve the three main goals of an optimal architecture, navigation, query,

and extraction, a powerful graphics API is required. Furthermore, in order to demonstrate
interoperability a standard API is required.

XML’Europe 99

April 99 Page 16

A conventional API based on interface functions only may seem like a good idea but it
is most likely proprietary, not very flexible, and also doesn’t quite fit into the fast
growing world of object-orientation.

The solution we propose offers the following key advantages:
• Profile independence
• Internal and external intelligence
• Exposes the entire hierarchical structure of a CGM
• Off-the-shelf web browser support
• Highest flexibility for implementing additional functionality through automation

Considering the environment CGM viewers are likely to work in — Web browsers,
office applications, etc. — and the high-level programming techniques used in these
environments — automation through JavaScript, JScript, VBScript, ECMA Script, and
VBA — a similar approach seems to be best suitable.

Taking Web browsers and HTML as an example, a big effort has been made to
programmatically access each individual element of an HTML document. First results
were limited object models implemented by the 3rd Web browser generation. These
models have been extended to the, unfortunately still proprietary, Document Object
Models currently supported by the 4th Web browser generation. An effort to standardize
the Document Object Model for HTML and XML has resulted in the W3C
recommendation “Document Object Model (DOM) Level 1 Specification” [W3CDOM].

With this proposal, we would like to initiate open discussions with the goal of creating
an equivalent standardized specification for CGM, the “CGM Document Object Model”.

XML’Europe 99

April 99 Page 17

CGM
Graphic

Hypertext engine

CGM DOM XML DOM

XML
associated file

<?xml
version="1.0"?>
<doc ID="FM5
2792414ALM0 00"
type="cgm"
content="AMM406.
html">
<title>Transduce
r Units</title>
<semantic>…
</doc>

Document A
Interactive graphic

Document B
Textual procedure

1 2

3

CGM Viewer

WEB navigator

Fig 5: An extended architecture

The illustration above presents an extended architecture based on the standardized
Document Object Model for XML and our proposed Document Object Model for CGM.
This architecture fulfills all needs for the mock-up, plus adding a new level of flexibility
and generalization by introducing a standard two-way graphics interface.

CGM DOCUMENT OBJECT MODEL
The CGM Document Object Model allows direct, programmable access to individual

components of CGM graphics. This access, combined with an event model, allows the
CGM viewer to react to user input, and display different views of the graphical content.
The CGM DOM puts sophisticated interactivity within easy reach without any profile
dependency. With a CGM DOM compliant viewer, there would be no need for
customizing viewers in order to support different profiles.

XML’Europe 99

April 99 Page 18

WHAT IS THE OBJECT MODEL?
The object model is the mechanism that makes CGM programmable. The object

model builds on functionality similar to that being used by Web authors creating
Dynamic HTML for Internet browsers.

The initial object model draft provides access to the intelligent structure model of a
CGM graphic. This means that every CGM APS element in the graphic can have a script
behind it that can be used to interact with user actions and change the view of the graphic
content dynamically. This event model lets a document react when the user has done
something on the graphic, such as move the mouse over a particular element, or click a
mouse button. Each event can be linked to a script that tells the viewer to modify the
view of the graphic on the fly, without having to go back to the server for a new file. The
advantages to this model are that authors will be able to create dynamic Web sites with
interactive graphical content, the basic requirement for sophisticated Interactive
Electronic Technical Manuals (IETM).

Let’s take a look at a simple example:

...

<object id="viewer" src="test.cgm" type="image/cgm"
 width=100 height=100>
</object>

<script language="JavaScript">
if (viewer.metafile.title != "")
 alert("The title of this metafile is " + viewer.metafile.title);
}
</script>

...

This piece of HTML/JavaScript code demonstrates how to access the CGM DOM in a
Web browser via scripting. The script reads the title property of metafile object
contained in the viewer instance and displays the result, if not empty, in a message box.
The whole structure of a CGM file could be extracted this way and by specifying
scripting functions for the events exposed by the objects of the CGM DOM the next level
of sophistication is reached. The CGM has become interactive. It can react to user input
by executing the specified scripts.

The proposed solution for a flexible, dynamic and standardized graphics API can be
summarized by the following formula:

Object Model + Event Model + Object Methods = API

SCOPE OF THIS DRAFT
The CGM Document Object Model represents a substantial project that we have just

started working on. The present, preliminary concept can be found in further detail in the

XML’Europe 99

April 99 Page 19

appendix of this document.
This draft does not attempt to offer a complete model for accessing all aspects of a

CGM file, which has to be considered as the ultimate goal. Instead, it focuses on the
“intelligent” graphic object structure expressed by V4 Application Structure (APS)
elements. With this limited, but important, subset of a complete CGM DOM, it will be
possible to implement the three main goals of an optimal architecture, navigation, query,
and extraction, outside (and therefore independent of) the viewer.

Conclusion
This paper has presented a viable, conceptual architecture for Intelligent Graphics

using current standards, and has illustrated concretely how this architecture can be
implemented using currently available technologies. The demonstration of the
architecture in a mock-up experiment illustrates some key issues, which must be further
addressed in order that the conceptual architecture can be realized in an open,
interoperable, and implementable standard architecture for Intelligent Graphics. We have
proposed a solution to perhaps the most critical issue — the "standard viewer API" issue
— with a CGM DOM proposal, and have illustrated the overall concepts and content of
work-in-progress to fully define the CGM DOM.

XML’Europe 99

April 99 Page 20

Appendix A

A.1: CGM DOM Objects Reference
Note: Since this is a very early state of this project, and subject to rapid change, only

the first object, the metafile object, and the first collection, the picture collection, will be
described in detail. This will illustrate the concepts of the CGM DOM proposal.

The other object references have been developed to a similar level of detail, but are
listed here only in brief tabular form, to indicate the scope and content of this work-in-
progress.

TERMINOLOGY DEFINITIONS
An Object, such as the CGM viewer itself, is a programming structure encapsulating

both data and functionality that are defined and allocated as a single unit and for which
the only public access is through the programming structure's interfaces.

A Property is a data member of an exposed object, such as the metafile description
string of a CGM. Properties are set or returned by their names. Internally, properties are
implemented as get and put accessor functions, which allows a property to be read-only,
for example, by omitting the put accessor implementation.

A Collection is an array of elements contained by an object, such as an array of
pictures contained in a CGM. Collections usually expose a length property, which returns
the number of elements in the array. An element can generally be accessed via its zero-
based index.

A Method is a member function of an exposed object that performs some action on
the object, such as changing the zoom factor of a picture.

An Event is an action recognized by an object, such as clicking the mouse or pressing
a key, and for which you can write code to respond. In Automation, an event is a method
that is called, rather than implemented, by an Automation object. Reporting an event to a
hosting application is often referred to as “firing” an event.

metafile
Properties Collections Methods Events
title pictures ... onload
version ... onunload
description ...
picture
location

XML’Europe 99

April 99 Page 21

...

DESCRIPTION
Represents the Computer Graphics Metafile in a given CGM viewer. You can use the metafile
object to retrieve information about the metafile, to examine the pictures within the metafile, and
to process events.
The metafile object is available at all times. You can retrieve the object by applying the metafile
property to a viewer object.

EXAMPLES
The following example defines a function that displays a JavaScript alert (message) box. It then
assigns this function to the onload event of the metafile object contained in the CGM viewer
object with the id “viewer”. The viewer fires the onload event after loading a metafile and causes
the browser to execute the loaded function, which displays the the string " Metafile has been
loaded." in a message box.

function loaded()
{
 alert("Metafile has been loaded.");
}

viewer.metafile.onLoad="loaded()";

PROPERTIES
title The BeginMetafile string.
version The MetafileVersion element.
description The MetafileDescription string.
picture The currently displayed picture object.
location The URI of the metafile.

COLLECTIONS
pictures A collection of all picture objects contained in the metafile.

METHODS
(none so far)

EVENTS
onload Fires immediately after the viewer loads the metafile.
onunload Fires immediately prior to the metafile being unloaded.

XML’Europe 99

April 99 Page 22

picture
Properties Collections Methods Events
title aps load onload
scalemode onunload
vdcextent onmouseover
... onmouseout

onmousemove
onclick
ondblclick
...

aps
Properties Collections Methods Events
id attributes ... onmouseover
type aps onmouseout
... ... onmousemove

onclick
ondblclick
...

attribute
Properties Collections Methods Events
name
value
...

sdr
Properties Collections Methods Events
... sdritems

...

XML’Europe 99

April 99 Page 23

sdritem
Properties Collections Methods Events
type sdritemelements
... ...

sdritemelement
Properties Collections Methods Events
value
...

A.2: CGM DOM Collections Reference

pictures
Syntax Properties Methods Applies to
object.pictures(index) length ... metafile

... ...

DESCRIPTION
Is a collection of all picture objects contained in a metafile.

SYNTAX
object.pictures(index)

Parameter Description
object The metafile object.

(index)

Optional. An integer or a string specifying the index value of
the object to retrieve. Integer indexes are zero-based,
meaning the first object in the collection has index 0. A string
index is valid only if the string is an identifier of a picture in
the metafile.

REMARKS
The returned objects are of the type picture. The pictures collection can be used to query
information about all pictures of the metafile. Note however, that in order to improve performance

XML’Europe 99

April 99 Page 24

and reduce memory footprint the collections of the picture objects will only be available for the
currently loaded picture. In other words, you will only be able to retrieve picture descriptor
information for the pictures not currently loaded by the viewer.

PROPERTY
length Returns the number of elements in a collection.

METHODS
(none so far)

APPLIES TO
metafile

aps
Syntax Properties Methods Applies to
object.aps(index) length ... picture

... ...

attributes
Syntax Properties Methods Applies to
object.attributes(index) length ... aps

... ...

sdritems
Syntax Properties Methods Applies to
object.sdritems(index) length ... sdr

... ...

sdritemelements
Syntax Properties Methods Applies to
object.sdritemelements(index) length ... sdritem

XML’Europe 99

April 99 Page 25

... ...

XML’Europe 99

April 99 Page 26

Bibliography
[CGMO98] CGM Open GroupWEB site: http://www.CGMopen.org
[HENM93] Henderson, Lofton R, Mumford, Anne M, The CGM Handbook, Academic
Press, 1993
[IGREQ22] ATA Graphics Working Group, ATA 2100 specifications, Chapter 3.3.3
"Intelligent Graphics Requirements", ATA (Air transport Association) 2100
Specifications, Revision 1998
[IGEX24] ATA Graphics Working Group, ATA 2100 specifications, Chapter 3.3.4
"Intelligent Graphics Exchange", ATA (Air transport Association) 2100 Specifications,
Revision 1998
[ISO8632] ISO (International Standards Organization) Information technology -
Computer graphics - Metafile for the storage and transfer of picture description
information ISO/IEC 8632 -1992- 1994

[W3CDOM] W3C “Document Object Model (DOM) Level 1 Specification” web site:
http://www.w3.org/TR/REC-DOM-Level-1

